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Abstract

Wearable photoplethysmography devices such as smart-
watches can detect possible arrhythmias from inter-beat
intervals (IBls). However, photoplethysmogram (PPG)
signals are highly susceptible to motion artifact. This
study investigated using simultaneous accelerometry sig-
nals to determine whether IBls can be reliably measured
from PPG signals. The PPG-DaLiA and WESAD datasets
were used. These datasets contain wrist accelerometry and
PPG signals collected from 15 subjects during activities of
daily living and mental stress tasks. IBls were estimated
from PPG signals using the ‘MSPTD’ beat detection algo-
rithm. PPG-based IBls were deemed accurate if the result-
ing instantaneous heart rate (IHR) was within £+ 5 bpm of
a reference ECG-derived IHR. The mean absolute devia-
tion (MAD) of the accelerometry signal was able to predict
whether PPG-derived IBls were accurate, with an area un-
der the precision-recall curve (AUPRC) of 0.82 on all data.
An optimal MAD threshold of 12.9 milli-gravitational units
was identified. However, performance was poorer during
stress (AUPRC of 0.54). In conclusion, accelerometry can
be used to identify periods when IBls can be accurately
measured from PPG signals during activities associated
with movement, but is not reliable during stress.

1. Introduction

Wearable devices equipped with photoplethysmography
sensors provide opportunity to monitor inter-beat intervals
(IBIs) unobtrusively in daily life. Smartwatches, hear-
ables, and smart rings typically use photoplethysmogra-
phy for heart rate monitoring. IBIs, the intervals between
successive heartbeats, can also be estimated from the pho-
toplethysmogram (PPG) signal. IBIs can be used in a
range of applications, from identifying potential arrhyth-
mias to assessing stress levels [1]. However, PPG signals
are highly susceptible to noise, particularly during motion,
and this can affect the accuracy of IBI estimation [2].
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Broadly, there are two approaches to dealing with noisy
PPG signals: the first is to remove motion artifact from a
signal so it can be used for analysis; the second is to assess
signal quality and only retain high quality (i.e. low noise)
periods for analysis [3]. Motion artifact removal has the
advantage of enabling analysis during exercise when it is
difficult to obtain high-quality signals, but the disadvan-
tage that only an approximate PPG signal is available for
analysis. Conversely, signal quality assessment has the ad-
vantage of using the measured signal for analysis, but does
not enable analysis in the presence of noise.

An alternative approach could be to use simultaneous
accelerometry signals to identify periods when IBIs can
be accurately estimated from PPG signals. This is based
on the assumption that inaccuracies in IBIs are caused by
movement-induced noise (i.e. motion artifact). This is a
practical approach since many wearables have accelerom-
eters. Indeed, this approach has been used in Apple and
FitBit devices to identify periods of PPG for atrial fibrilla-
tion detection [4,5]. However, to our knowledge there has
been little research into how to use accelerometry signals
to identify periods when IBIs can be estimated accurately.

The aim of this study was to investigate whether ac-
celerometry signals could be used to predict whether or
not IBIs could be accurately measured from simultaneous
PPG signals at the wrist. The objectives were to: (i) as-
sess the classification performance of such an approach;
(ii) identify an optimal classification threshold; and (iii)
assess performance across different activities.

2. Methods

2.1. Datasets

The publicly available PPG-DaliA and WESAD
datasets were used [6,7]. These contain accelerometry and
PPG signals recorded at 64 Hz at the wrist from 15 subjects
using an Empatica E4, alongside ECG signals recorded at
75 Hz at the chest using a RespiBAN Professional.
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The PPG-DaLiA dataset contains data collected during
a protocol of activities of daily living. In this study we used
data collected during all the available activities, consisting
of: sitting, working, walking, taking a lunch break, stair
climbing, car driving, table soccer, and cycling. The WE-
SAD dataset contains data collected during a protocol de-
signed to induce mental stress. In this study we used data
from baseline, amusement, stress, and meditation phases
(the second meditation phase was not used in this study).

2.2. Inter-beat interval estimation

IBIs were estimated from PPG signals as follows. First,
PPG signals were segmented into 20 s windows with 5's
overlap. Second, beats were detected using the ‘MSPTD’
beat detection algorithm [8], which has previously been
found to perform well [9]. Third, the middle-amplitude
points of each systolic upslope were identified from the on-
set and peak locations provided by the beat detector. These
were used as they have been found to be more suitable for
pulse rate variability analysis than onsets or peaks [10].
Fourth, repeated beat detections due to overlapping win-
dows were removed. Finally, IBIs were calculated as the
time delays between successive middle-amplitude points.

Reference IBIs were derived from ECG signals as fol-
lows. The PPG-DaLiA dataset contains manual beat an-
notations which were used in this study. The WESAD
dataset does not contain manual annotations, so beats were
detected as described in [9]: (i) beats were detected using
two separate ECG beat detectors (‘jqrs’ and ‘rpeakdetect’
algorithms [11-13]); and (ii) ‘correct’ beats were identified
as those which both beat detectors detected within 150 ms
of each other. Any 20 s windows in which the two beat
detectors did not agree were excluded from the analysis.

PPG and ECG signals were not necessarily precisely
time-aligned, so PPG- and ECG-derived IBIs were time-
aligned using a slight modification to our approach de-
scribed in [9]. Briefly, previously we found the optimal
lag between signals as the lag which resulted in the highest
proportion of PPG beats aligning with ECG beats (within
4 150 ms). In this work we improved the approach to re-
calculate the optimal lag for every 300 ECG beats, thereby
accounting for clocks drifting during a recording.

Any periods of missing ECG or PPG signals were ex-
cluded, as identified by a flat line lasting >0.2s.

2.3.  Assessing level of movement

The level of movement was quantified from accelerom-
etry signals by calculating the mean absolute deviation
(MAD) over 5 s windows. The MAD is calculated from
tri-axial accelerometry as follows [14]. First, the resultant
acceleration (r;) is calculated from accelerations in x, y

and z directions, in milli-gravitational (mg) units, as

ri=Jri+yZ+z2 . (1)

Then, the MAD is calculated as
1
MAD = —|r; — 7| . 2)
n

This approach has been previously recommended to clas-
sify physical activities according to their intensity [14, 15].

2.4. Statistical analysis

IBIs were deemed accurate if the instantaneous heart
rate (IHR) calculated from PPG-derived IBIs was within
=+ 5 bpm of the ECG-derived IHR. The performance of the
MAD for classifying PPG periods according to whether or
not IBIs could be accurately estimated was quantified us-
ing the areas under the receiver operator curve (AUROC)
and the precision-recall curve (AUPRC). The accuracy of
IBIs was summarised using mean absolute error (MAE).

3. Results

3.1. Dataset characteristics

Table 1 summarises the datasets. In total, 2,156 mins of
data were included in the analysis, and PPG-derived IBIs
were correct for 59.1% of this time. The proportion of IBIs
which were correct varied greatly between activities, from
93.7% during meditation to 17.4% during stair climbing.

Table 1. Dataset characteristics.

Dataset No. Duration per Prop. IBIs
subjs  subj (mins) correct (%)

meditation 15 6.3 (6.1-6.3) 93.7

amusement 15 5.8 (5.8-5.8) 80.4

baseline 15 19.1 (18.8-19.3)  76.0

stress 15 10.3 (10.0-10.8)  34.5

sitting 15 9.7 (9.7-9.9) 83.3

working 14 19.8 (19.7-20.4)  72.0

lunch break 14 32.3(28.7-37.2)  60.2

car driving 15 15.0 (14.1-15.7)  59.9

cycling 15 7.7 (6.7-8.1) 39.5

table soccer 15 4.7 (4.5-5.2) 27.7

walking 14 10.7 (9.4-11.5) 259

stair climbing 15 7.4 (6.7-7.7) 174

3.2.  Classification performance

Table 2 presents the results on the performance of using
the MAD to predict whether PPG-derived IBIs were accu-
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rate. It produced an AUROC of 0.78 and an AUPRC of
0.82 across the entire dataset.

Table 2. Performance of using MAD to predict whether
PPG-derived IBIs were accurate.

Dataset AUROC AUPRC
Combined 0.78 0.82
Mental stress 0.82 0.88
Daily living 0.77 0.79

3.3. Identifying an optimal threshold

Optimal thresholds were identified as those which pro-
duced IBI MAEs of <5 bpm. Figure 1 shows how the
MAE varied with different thresholds (left axis). The
higher the threshold, indicating a higher level of move-
ment, the lower the accuracy of IBIs (as indicated by
higher MAESs). In the future, another consideration could
be the proportion of data which falls below a threshold, and
is therefore used for analysis. Here, the optimal thresh-
old may differ according to the level of accuracy required.
Applications such as pulse rate variability analysis may re-
quire a high level of accuracy and therefore a lower thresh-
old, whereas arrhythmia detection may require a lower
level of accuracy, and therefore tolerate a higher threshold.
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Figure 1. Performance at different MAD thresholds: (left
axis) the mean absolute error (MAE) in instantaneous heart
rate (IHR); (right axis) proportion of data below threshold.

Table 3 presents the optimal thresholds which produce
a MAE in IHRs of <5 bpm, for the combined dataset and
separately for mental stress tasks and physical activities.
The optimal threshold for the combined dataset was 12.9

mg, and 44.0 % of the data fell below this threshold. This
threshold approximately corresponds to cutoffs between
sedentary behaviour and low-intensity activities [14, 15].

Table 3.  Optimal MAD thresholds to predict whether
PPG-derived IBIs were accurate.

Dataset MAD threshold Proportion below
(mg) threshold (%)

Combined 12.9 44.0

Mental stress  10.9 72.0

Daily living 17.1 35.0

3.4. Performance across different activities

Figure 2 shows the MAE in IHRs for data below the op-
timal MAD threshold across different activities. The MAE
was <5 bpm as expected for all activities except stress, ta-
ble soccer, and walking.
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Figure 2. The MAE in IHR for data below the optimal
MAD threshold for different activities.

Figure 3 helps understand the reasons for, and conse-
quences of, the poorer performance during these activities.
The figure shows, for each activity, the proportion of data
for which: (i) the MAD was below the threshold and IBIs
were correct (blue); (ii) the MAD was below the threshold
and IBIs were incorrect (red); and (iii) the MAD was above
the threshold (and therefore data would not be analysed)
(yellow). Considering walking and table soccer: only a
very small proportion of data fell below the threshold in
these activities (5.8 % and 0.3% respectively), so the im-
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pact of high MAEs would be minimal during these activi-
ties as most data would be excluded from analysis. In con-
trast, a relatively high proportion of data collected during
stress fell below the threshold (53.0%), so the impact of
high MAEs would be substantial during stress. The poorer
performance during stress may be because: (i) stress in-
duces noise in the PPG which is not entirely attributable to
movement; and/or (ii) movement during stress does induce
noise, but the movement levels fall below the threshold.

‘-IBI correct [ 1Bl incorrect [ low quality ‘

Proportion of data (%)

Figure 3. The proportion of data for each outcome for
different activities.

4. Conclusion

Accelerometry can be used to identify periods when
IBIs can be accurately measured from PPG signals during
physical activities with reasonable performance. However,
performance was poorer during mental stress. A potential
application of the accelerometry-based approach is as an
adjunct to existing PPG-based approaches, and future work
should investigate whether a combined approach provides
improved performance over either approach on its own.
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